ECONOMIC ASSESSMENT OF THE BIOLOGICAL AGENT USE IN ECOLOGICAL POTATO PRODUCTION – SYSTEM DYNAMICS SIMULATION

Main Article Content

Mariusz Maciejczak
Krzysztof Treder
Janusz Urbanowicz
Jerzy Osowski
Igor Olech


Keywords : potato, biocontrol, beneficial microorganisms, system dynamics, scab, rhizoctonia, economic simulation
Abstract

Aim: The aim of this study is to assess the economic viability by calculating the potential profits and expenses for farmers, and to simulate the impact of the application of a microbiological agent on the potato plant in a field trial. The field experiment aimed to identify the role of the biological agent while substituting the synthetic plant fertilization and protection.


Methodology: The system dynamics method was applied to the data provided from one planting season of field experiments conducted in the framework of the PotatoMETABiome project. From eleven tested varieties on six different scenario plots, the most economically viable variety – Pasja Pomorska – was tested. The comparative approach was applied to show the results of inoculating potato plants with biological agents and using synthetic pesticides and fertilizers.


Results: The results show that the application of biocontrol agents increases the quality and quantity of the potato yield compared to a variant in which no synthetic agents are used. These are, however, higher while applying the latter. It can therefore be argued that the microbiological agent could support ecological potato production, yet it does not reach the economic break-even point yet.


Conclusions: Bearing in mind the limitations resulting from the experimental nature of field research, the level of economic profitability of innovative biological preparations and the importance of their use in agriculture have been demonstrated.

Article Details

How to Cite
Maciejczak, M., Treder, K., Urbanowicz, J., Osowski, J., & Olech, I. (2023). ECONOMIC ASSESSMENT OF THE BIOLOGICAL AGENT USE IN ECOLOGICAL POTATO PRODUCTION – SYSTEM DYNAMICS SIMULATION. Acta Scientiarum Polonorum. Oeconomia, 21(4), 13–26. https://doi.org/10.22630/ASPE.2022.21.4.14
References

Abbas, A., Mubeen, M., Zheng, H., Sohail, M., Shakeel, Q., Solanki, M., Iftikhar, Y., Sharma, S., Kashyap, B., Hussain, S., Romano, M., Moya-Elizondo, E., Zhou, L. (2022). Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani. Frontiers in Microbiology, 13, 884469. https://www.doi.org/10.3389/fmicb.2022.884469. (Crossref)

Abdelrazek, A., Abdelmonim, A., Maha, O., Adel, H., Qi, H. (2021). A new Streptomyces scabies-infecting bacteriophage from Egypt with promising biocontrol traits. Archives of Microbiology, 203. https://www.doi.org/10.1007/s00203-021-02415-2. (Crossref)

Baihaqi, A., Hakim, L., Marsudi, E., Zulkarnain. (2021). System dynamics modeling on new generation cooperative as an alternative to enhance bargaining position of potato farmers in Bener Meriah district. IOP Conference Series: Earth and Environmental Science, 922 (1), 012063. https://doi.org/10.1088/1755-1315/922/1/012063. (Crossref)

Bombik, A., Wolska, A. (2004). Selected Factors Influencing The Economic Effect Of Potato Production. Acta Scientiarum Polonorum. Oeconomia, 3 (2), 17–26. Retrieved from https://aspe.sggw.edu.pl/article/view/951 [accessed: 05.12.2022].

Böcker, T.G., Finger, R. (2016). A Meta-Analysis on the Elasticity of Demand for Pesticides. Journal of Agricultural Economics, 68 (2), 518–533. https://www.doi.org/10.1111/1477-9552.12198. (Crossref)

Cui, L., Yang, C., Wang, Y., Ma, T., Cai, F., Wei, L., Jin, M., Osei, R., Zhang, J., Tang, M. (2022). Potential of an endophytic bacteria Bacillus amyloliquefaciens 3–5 as biocontrol agent against potato scab. Microbial Pathogenesis, 163, 105382. https://www.doi.org/10.1016/j.micpath.2021.105382. (Crossref)

DeFauw, S.L., Larkin, R.P., English, P.J., Halloran, J.M., Hoshide, A.K. (2012). Geospatial evaluations of potato production systems in Maine. American Journal of Potato Research, 89, 471–488. https://www.doi.org/10.1007/s12230-012-9271-2 (Crossref)

Ginter, A., Zarzecka, K., Gugała, M. (2022). Effect of Herbicide and Biostimulants on Production and Economic Results of Edible Potato. Agronomy, 12, 1409. https://www.doi.org/10.3390/agronomy12061409 (Crossref)

Feng, R.Y., Chen, Y.H., Lin, C., Tsai, C.H., Yang, Y.L., Chen, Y.L. (2022). Surfactin secreted by Bacillus amyloliquefaciens Ba01 is required to combat Streptomyces scabies causing potato common scab. Frontiers in Plant Science, 13, 998707. https://www.doi.org/10.3389/fpls.2022.998707. (Crossref)

Hakim, L., Perdana, T. (2017). System dynamics modeling on integrated supply chain management of potato agribusiness. MIMBAR. Jurnal Sosial Dan Pembangunan, 33 (1), 1. https://doi.org/10.29313/mimbar.v33i1.2092. (Crossref)

Herrera, H., Schütz, L., Paas, W., Reidsma, P., Kopainsky, B. (2022). Understanding resilience of farming systems: Insights from system dynamics modelling for an arable farming system in the Netherlands. Ecological Modelling, 464, 109848. https://doi.org/10.1016/j.ecolmodel.2021.109848. (Crossref)

Isayenka, I., Duque-Yate, J., Goulet, M-C., Michaud, D., Beaulieu, C., Beaudoin, N. (2022). Increased abundance of patatins, lipoxygenase and miraculins in a thaxtomin A-habituated potato Russet Burbank somaclone with enhanced resistance to common scab. Plant Pathology, 00, 1–12. https://doi.org/10.1111/ppa.13650 (Crossref)

Jaiswal, A.K., Singh, B., Mehta, A., Lal, M., (2022). Post- Harvest Losses in Potatoes from Farm to Fork. Potato Resarch. https://doi.org/10.1007/s11540-022-09571-y (Crossref)

Khodakaramian, G., Khodakaramian, N. (2013). Characteristics and Biocontrol of the Bacterial Causing Potato Complex Scab Diseases. Conference: 3rd International Conference on Medical Sciences and Chemical Engineering (ICMSCE’2013) Dec., 25–26, Bangkok, Thailand.

Larkin, R., Brewer, M. (2020). Effects of Crop Rotation and Biocontrol Amendments on Rhizoctonia Disease of Potato and Soil Microbial Communities. Agriculture, 10, 128. https://www.doi.org/10.3390/agriculture10040128 (Crossref)

Mack, G., Willersinn, C., Mouron, P., Siegrist, M. (2016). Kartoffelverluste in der Schweiz vom Feld bis zum Teller (Potato losses in Switzerland from field to fork). Agrarforschung, 7, 104–111.

Mejdoub-Trabelsi, B., Aydi Ben Abdallah, R., Jabnoun- Khiareddine, H., Fakher, A., Daami-Remadi, M. (2022). Antagonizing Impact Of Endophytic Fungal Isolates Against Potato Black Scurf (Rhizoctonia Solani). International Journal of Phytopathology, 11(1), 09–18. https:// doi.org/ 10.33687/phytopath.011.01.3897 (Crossref)

Meng, J., Zhang, X., Han, X., Fan, B. (2022). Application and Development of Biocontrol Agents in China. Pathogens, 11, 1120. https:// doi.org/10.3390/pathogens11101120. (Crossref)

Montesinos, E. (2004). Development, registration and commercialization of microbial pesticides for plant protection. International microbiology: the official Journal of the Spanish Society for Microbiology, 6, 245–252. https://www.doi.org/10.1007/s10123-003-0144-x. (Crossref)

Pacilly, F.C.A., Groot, J.C.J., Hofstede, G.J., Schaap, B.F., van Bueren, E.T.L. (2016). Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping. Agronomy for Sustainable Development, 36 (2). https://doi.org/10.1007/s13593-016-0370-1. (Crossref)

Pathak, D., Rashmi, Y., Mukesh, K. (2017). Microbial Pesticides: Development. Prospects and Popularization in India. https://doi.org/10.1007/978-981-10-6593-4_18. (Crossref)

Piwowar, A. (2018). Chemiczna ochrona roślin we współczesnym rolnictwie w perspektywie ekonomicznej i ekologicznej – korzyści, koszty oraz preferencje. Monografie i Opracowania Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.

Rich, K., Dizyee, K. (2016). Policy options for sustainability and resilience in potato value chains in Bihar: a system dynamics approach No. 870. Norwegian Institute of International Affairs, Oslo.

Saber, W., Ghoneem, K., Alaskar, A., Rashad, Y., Ali, A., Rashad, Ehsan M. (2015). Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia disease of potato. Acta Biologica Hungarica, 66, 436–448. https://www.doi.org /10.1556/018.66.2015.4.8. (Crossref)

Sabhikhi, H., Hunjan, M. (2022). Management of potato scab (Streptomyces scabies) by seed treatment with chemical and biocontrol agents. Plant Disease Research, 36, 188–195. https://www.doi.org/10.5958/2249-8788.2021.00030.5 (Crossref)

Shuang, M., Wang, Y., Teng, W., Ru, J., Jiang, L., Cong, W. (2022). Antimicrobial Activity of Bacillus velezensis K-9 Against Potato Scab and Its Genome-wide Analysis. https://www.doi.org/10.21203/rs.3.rs-2015769/v1. (Crossref)

Tuka, P. (2016) Zmiany powierzchni uprawy a opłacalność produkcji ziemniaków w Polsce (Changes in the production area vs. profitability of potatoes in Poland), SERiA, 18, 3, 363–367.

Turner, B., Menendez, H., Gates, R., Tedeschi, L., Atzori, A. (2016). System dynamics modeling for agricultural and natural resource management issues: Review of some past cases and forecasting future roles. Resources, 5 (4), 40. https://doi.org/10.3390/resources5040040. (Crossref)

UNECE (2017) Food Loss And Waste The Case Of Seed Potato Certification And The Unece Seed Potato Certification Standard. United Nations Economic Commission for Europe Working Party on Agricultural Quality Standards Specialized Section on Standardization of Seed Potatoes. Retrieved from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj57v_495P6AhWKmIsKHT5DAeYQFnoECAcQAQ&url=https%3A%2F%2Fwww.unece.org%2Ffileadmin%2FDAM%2Ftrade%2Fagr%2Fstandard%2Fpotatoes%2FFoodLossAndWaste_Nov2017_E.pdf&usg=AOvVaw2LOxAvxNsw_N0H28i4IZ9Z [accessed: 14.09.2022].

Wahyuni, I., Adipraja, P.F.E., Mahmudy, W.F. (2018). Determining growing season of potatoes based on rainfall prediction result using system dynamics. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 6 (2). https://doi.org/10.11591/ijeei.v6i2.315. (Crossref)

Wang, Z., Li, Y., Zhuang, L., Yu, Y., Liu, J., Zhang, L., Gao, Z., Wu, Y., Gao, W., Ding, G., Wang, Q. (2019). A Rhizosphere- Derived Consortium of Bacillus subtilis and Trichoderma harzianum Suppresses Common Scab of Potato and Increases Yield. Computational and Structural Biotechnology Journal, 17, 645–653. https://doi.org/10.1016/j.csbj.2019.05.003 (Crossref)

Vilcacundo, E., Trillas, M.I., Carrillo Terán, W. (2020). Trichoderma asperellum train T34 Used as Biocontrol Agent Against Rhizoctonia solani in Potato Plants. Plant Pathology Journal, 19, 89–97. https://doi.org/10.3923/ppj.2020.89.97 (Crossref)

Vongati, M., Mohanty, S., Das, K. (2022). Role of Microbial Pesticides in IPM. Just Agriculture, 2, 12.

Yuan, J., Bizimungu, B., De Koeyer, D., Rosyara, U., Wen, Z., Lagüe, M. (2019). Genome-Wide Association Study of Resistance to Potato Common Scab. Potato Research, 63, 253–266. https://www.doi.org/10.1007/s11540-019-09437-w (Crossref)

Zarzecka, K., Gugała, M. (2010). Profitability of different weed control methods in potato field. Acta Scientiarum Polonorum. Oeconomia, 9 (3), 295–300. Retrieved from https://aspe.sggw.edu.pl/article/view/689 [accessed: 05.12.2022].

Statistics

Downloads

Download data is not yet available.