IMPACT OF THE GREEN TRANSITION ON THE PRODUCTION OF CEREALS IN THE EUROPEAN UNION. NEW INSIGHTS BASED ON THE FGLS PANEL DATA MODEL

Main Article Content

Błażej Suproń


Keywords : Cereal production, Agriculture, FGLS, Green transformation, European Union
Abstract

Aim: The aim of this study is to econometrically assess the long-term impact of Green Deal-related regulatory areas on cereal crop production in European Union countries. Methods: The study is based on an analysis of panel data for 21 European Union countries for the period 1995–2021. The FGLS, PCSE and CCEMG models, which are robust to heteroskedasticity and cross-sectional dependence, were used to determine the impact of agricultural CO2 emissions, agricultural area, food production volumes and fertilizer consumption on cereal production. In addition, a robust test of the Westerlund ECM panel test model was applied to confirm cointegration. All models were bootstrapped to strengthen the results. Results: The results show that, in the long run, a 10% increase in CO2 emissions from agriculture leads to an average decrease in cereal production of 0.5%. A 1% increase in cultivated area leads to a 1.1% positive change in the value of cereal production, and a 1% increase in fertilizer use per hectare leads to a 0.38% increase in cereal production. The value of the food production index also shows a positive effect on cereal production. If the index increases by 1 p.p., cereal production increases by 1.13% in the long term. The study also found a positive relationship between an increase in the share of renewable energy and the volume of cereal production. If the share of renewable energy increases by 1%, the volume of cereal production in the EU countries increases by 0.11%. Conclusions: Overall, it can be concluded that the green transformation brings both negative and positive aspects of change to agriculture. The decrease in cultivated land and reduced use of artificial fertilizers may negatively impact farm productivity in crop production areas. On the other hand, the improvement of climatic conditions and the development of renewable energies could be beneficial for agriculture in the long term. The study is original in the sense that it fills an empirical and theoretical gap related to the verification of the impact of the Green Deal on the cereal production sector and thus on agriculture in the European Union.

Article Details

How to Cite
Suproń, B. (2024). IMPACT OF THE GREEN TRANSITION ON THE PRODUCTION OF CEREALS IN THE EUROPEAN UNION. NEW INSIGHTS BASED ON THE FGLS PANEL DATA MODEL. Acta Scientiarum Polonorum. Oeconomia, 23(3), 55–72. https://doi.org/10.22630/ASPE.2024.23.3.12
References

Abbasi, K. (2021). Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain¬able Energy Technologies and Assessments, 47, 101452. https://doi.org/10.1016/j.seta.2021.101452

Abdullahi, N.M., Ibrahim, A., Ahmad, A., Huo, X. (2023). Cereal production amidst fertilizer usage, cereal crop¬land area, and farm labor in Nigeria: A novel dynamic ARDL stimulations approach. Research Square. https://doi.org/10.21203/rs.3.rs-3666789/v1 (Crossref)

Adamowicz, M. (2021). Zielona gospodarka, zielony wzrost i zazielenienie jako formy realizacji koncepcji zrów¬noważonego rozwoju (Green economy, green growth and greening as the forms of sustainable development concept). Wieś i Rolnictwo, 2(191), 13–33. https://doi.org/10.53098/wir022021/01 (Crossref)

Adviento-Borbe, M.A.A. (2020). 3 – An agronomic over¬view of US cereal cropping systems. [In:] A. A. Perdon, S.L. Schonauer, K. S. Poutanen (eds), Breakfast Cereals and How They Are Made (Third Edition). AACC Inter¬national Press, 39–71. https://doi.org/10.1016/B978-0-12-812043-9.00003-5 (Crossref)

Ahsan, F., Chandio, A.A., Fang, W. (2020). Climate change impacts on cereal crops production in Pakistan: Evidence from cointegration analysis. International Journal of Cli¬mate Change Strategies and Management, 12(2), 257–269. https://doi.org/10.1108/IJCCSM-04-2019-0020 (Crossref)

Bai, J., Choi, S.H., Liao, Y. (2021). Feasible generalized least squares for panel data with cross-sectional and se¬rial correlations. Empirical Economics, 60(1), 309–326. https://doi.org/10.1007/s00181-020-01977-2 (Crossref)

Baig, I., Ahmed, F., Salam, Md. A., Khan, S. (2020). An as¬sessment of Climate change and Crop Productivity in India: A a Multivariate Cointegration Framework. Test Engineering and Management, 83, 3438–3452.

Baltagi, B.H., Feng, Q., Kao, C. (2012). A Lagrange Multi¬plier test for cross-sectional dependence in a fixed effects panel data model. Journal of Econometrics, 170(1), 164–177. https://doi.org/10.1016/j.jeconom.2012.04.004 (Crossref)

Beck, N., Katz, J.N. (2011). Modeling Dynamics in Time-Series – Cross-Section Political Economy Data. Annual Review of Political Science, 14(1), 331–352. https://doi.org/10.1146/annurev-polisci-071510-103222 (Crossref)

Beckman, J., Ivanic, M., Jelliffe, J.L., Baquedano, F.G., Scott, S. G. (2020). Economic and Food Security Im¬pacts of Agricultural Input Reduction Under the Euro¬pean Union Green Deal’s Farm to Fork and Biodiversity Strategies. https://doi.org/10.22004/ag.econ.307277

Ben Jebli, M., Ben Youssef, S. (2017). The role of renew¬able energy and agriculture in reducing CO2 emis¬sions: Evidence for North Africa countries. Ecologi¬cal Indicators, 74, 295–301. https://doi.org/10.1016/j.ecolind.2016.11.032 (Crossref)

Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., Aranjuelo, I. (2021). Climate Change, Crop Yields, and Grain Quality of C3 Cereals: A Meta-Analysis of [CO2], Temperature, and Drought Effects. Plants, 10(6), 1052. https://doi.org/10.3390/plants10061052 (Crossref)

Blake, R. (2020). Will the European Green Deal Make Agriculture More Sustainable? Outlooks on Pest Man¬agement, 31(5), 198–200. https://doi.org/10.1564/v31_oct_01 (Crossref)

Centi, G., Iaquaniello, G., Perathoner, S. (2019). Chemical engineering role in the use of renewable energy and al¬ternative carbon sources in chemical production. BMC Chemical Engineering, 1(1), 5. https://doi.org/10.1186/s42480-019-0006-8 (Crossref)

Chandio, A.A., Jiang, Y., Fatima, T., Ahmad, F., Ahmad, M., Li, J. (2022). Assessing the impacts of climate change on cereal production in Bangladesh: Evidence from ARDL modeling approach. International Journal of Climate Change Strategies and Management, 14(2), 125–147. https://doi.org/10.1108/IJCCSM-10-2020-0111 (Crossref)

Chandio, A.A., Ozturk, I., Akram, W., Ahmad, F., Mirani, A.. A. (2020). Empirical analysis of climate change factors affecting cereal yield: Evidence from Turkey. Environ¬mental Science and Pollution Research, 27(11), 11944––11957. https://doi.org/10.1007/s11356-020-07739-y (Crossref)

The European Green Deal (2019). European Commission.Communication from the Commission to the European Par¬liament, the European Council, the Council, the European

Economic and Social Committee and the Committee of the Regions. The European Green Deal, [COM(2019) 640 final]. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX%3A52019DC0640

Demirhan, H. (2020). Impact of increasing temperature anomalies and carbon dioxide emissions on wheat pro¬duction. Science of The Total Environment, 741, 139616. https://doi.org/10.1016/j.scitotenv.2020.139616 (Crossref)

Dogan, E., Seker, F. (2016). Determinants of CO2 emis¬sions in the European Union: The role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. https://doi.org/10.1016/j.renene.2016.03.078 (Crossref)

Dorgbetor, I.K., Ondrasek, G., Kutnjak, H., Mikuš, O. (2022). What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies. Agriculture, 12(10), 10. https://doi.org/10.3390/agricul¬ture12101518 (Crossref)

Dumitrescu, E.-I., Hurlin, C. (2012). Testing for Grang¬er non-causality in heterogeneous panels. Economic Modelling, 29(4), 1450–1460. https://doi.org/10.1016/j.econmod.2012.02.014 (Crossref)

Fayet, C.M.J., Reilly, K.H., Van Ham, C., Verburg, P.H. (2022). The potential of European abandoned agricultur¬al lands to contribute to the Green Deal objectives: Pol¬icy perspectives. Environmental Science & Policy, 133, 44–53. https://doi.org/10.1016/j.envsci.2022.03.007 (Crossref)

Fomby, T.B., Johnson, S.R., Hill, R.C. (1984). Fea¬sible Generalized Least Squares Estimation. [In:] T.B. Fomby, S.R. Johnson, R.C. Hill (Edseds.), Advanced Econometric Methods., Springer, New York, 147–169. https://doi.org/10.1007/978-1-4419-8746-4_8 (Crossref)

Green, R., Cornelsen, L., Dangour, A.D., Turner, R., Shan¬kar, B., Mazzocchi, M., Smith, R.D. (2013). The effect of rising food prices on food consumption: Systematic review with meta-regression. BMJ, 346, f3703. https://doi.org/10.1136/bmj.f3703 (Crossref)

Grochowska, R., Staszczak, A. (2021). Możliwości imple¬mentacji założeń unijnej strategii „Od pola do stołu” w sektorze rolno-spożywczym (Possibilities of imple¬menting the assumptions of the EU “ Farm to Fork” strategy in the agri-food sector). Przemysł Spożywczy, 75(7). https://doi.org/10.15199/65.2021.7.1 (Crossref)

Iji, P.A., Barekatain, M.R., Iji, P.A., Barekatain, M.R. (2011). Implications for the Feed Industry. [In:] M.A. Dos San¬tos Bernardes (Eded.), Economic Effects of Biofuel Pro¬duction. IntechOpen. https://doi.org/10.5772/16434 (Crossref)

Im, K. S., Pesaran, M. H., Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econo¬metrics, 115(1), 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 (Crossref)

Karaczun, Z., Kozyra, J. (2020). Wpływ zmiany klimatu na bezpieczeństwo żywnościowe Polski (The impact of cli¬mate change on Poland’s food security). Wydawnictwo SGGW, Warszawa.

Kibria, Md.G., Aspy, N.N., Ullah, E., Dewan, Md.F., Hasan, Md.A., Hossain, Md.A., Haseeb, M., Hossain, Md.E. (2023). Quantifying the effect of agricultural greenhouse gas emissions, food production index, and land use on cereal production in South Asia. Journal of Cleaner Production, 432, 139764. https://doi.org/10.1016/j.jclepro.2023.139764 (Crossref)

Koondhar, M.A., Aziz, N., Tan, Z., Yang, S., Raza Abbasi, K., Kong, R. (2021). Green growth of cereal food pro¬duction under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM mod¬els. Sustainable Energy Technologies and Assessments, 47, 101452. https://doi.org/10.1016/j.seta.2021.101452 (Crossref)

Koondhar, M.A., Udemba, E.N., Cheng, Y., Khan, Z.A., Koondhar, M.A., Batool, M., Kong, R. (2021). Asym¬metric causality among carbon emission from agricul¬ture, energy consumption, fertilizer, and cereal food production – A nonlinear analysis for Pakistan. Sustain¬able Energy Technologies and Assessments, 45, 101099. https://doi.org/10.1016/j.seta.2021.101099 (Crossref)

Köprücü, Y., Acarođlu, H. (2023). How cereal yield is in¬fluenced by eco-environmental factors? ARDL and spectral causality analysis for Turkey. Cleaner Environ¬mental Systems, 10, 100128. https://doi.org/10.1016/j.cesys.2023.100128 (Crossref)

Kumar, P., Sahu, N. C., Kumar, S., Ansari, M. A. (2021). Impact of climate change on cereal production: Evidence from lower-middle-income countries. Environmental Science and Pollution Research, 28(37), 51597–51611. https://doi.org/10.1007/s11356-021-14373-9 (Crossref)

Laskowski, W., Górska-Warsewicz, H., Rejman, K., Czeczotko, M., Zwolińska, J. (2019). How Important are Cereals and Cereal Products in the Average Pol¬ish Diet? Nutrients, 11(3), 3. https://doi.org/10.3390/nu11030679 (Crossref)

Li, X., Xia, X., Ren, J. (2022). Can the Participation in Qual¬ity Certification of Agricultural Products Drive the Green Production Transition? International Journal of Environ¬mental Research and Public Health, 19, 17. https://doi.org/10.3390/ijerph191710910 (Crossref)

Liu, X., Zhang, S., Bae, J. (2017). The nexus of renew¬able energy-agriculture-environment in BRICS. Ap¬plied Energy, 204, 489–496. https://doi.org/10.1016/j.apenergy.2017.07.077 (Crossref)

Macdiarmid, I. (2022). The food system and climate change: Are plant-based diets becoming unhealthy and less en¬vironmentally sustainable? Proceedings of the Nutri¬tion Society, 81(2), 162–167. https://doi.org/10.1017/S0029665121003712 (Crossref)

Malhi, G.S., Kaur, M., Kaushik, P. (2021). Impact of Cli¬mate Change on Agriculture and Its Mitigation Strat¬egies: A Review. Sustainability, 13, 3. https://doi.org/10.3390/su13031318 (Crossref)

Monforti, F., Bódis, K., Scarlat, N., Dallemand, J.-F. (2013). The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renewable and Sustainable Energy Reviews, 19, 666–677. https://doi.org/10.1016/j.rser.2012.11.060 (Crossref)

Neupane, D., Adhikari, P., Bhattarai, D., Rana, B., Ahmed, Z., Sharma, U., Adhikari, D. (2022). Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth, 3, 1. https://doi.org/10.3390/earth3010004 (Crossref)

Nico, G., Christiaensen, L. (2023). Jobs, Food and Green¬ing: Exploring Implications of the Green Transition for Jobs in the Agri-food System. World Bank. https://doi.org/10.1596/39819 (Crossref)

Oishi, R. (2021). Economic Perspectives on Analysis of Ensuring Cereal Production and Consumption Secu¬rity. In Cereal Grains – Volume 2. IntechOpen. https://doi.org/10.5772/intechopen.96377 (Crossref)

Parlinska, M., Jaskiewicz, J., Rackiewicz, I. (2020). Wyzwa¬niadla rolnictwa związane za strategią Europejski Ziel¬ony Ład w okresie pandemii (Challenges for agriculture related to the European Green Deal strategy during the pandemic). Zeszyty Naukowe Szkoły Głównej Gospo-darstwa Wiejskiego w Warszawie. Problemy Rolnictwa Światowego, 20(2), 22–36. https://doi.org/10.22630/PRS.2020.20.2.10 (Crossref)

Pesaran, M.H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica, 74(4), 967–1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x (Crossref)

Poczta, W., Gradziuk, P., Matyka, M., Sadowski, A. (2023). Potential Changes in Land Use and Plant Production in Poland in the Context of Implementing the European Green Deal. Regional Barometer. Analyses & Progno¬ses, 19, 2. https://doi.org/10.56583/br.2303 (Crossref)

Prandecki, K., Wrzaszcz, W., Zieliński, M. (2021). Environ¬mental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy. Sustainability, 13, 18. https://doi.org/10.3390/su131810318 (Crossref)

Rahman, M.H., Majumder, S.C., Debbarman, S. (2020). Examine the Role of Agriculture to Mitigate the CO2 Emission in Bangladesh. Asian Journal of Agriculture and Rural Development, 10, 1. https://doi.org/10.18488/journal.1005/2020.10.1/1005.1.392.405 (Crossref)

Röös, E., Mie, A., Wivstad, M., Salomon, E., Johans¬son, B., Gunnarsson, S., Wallenbeck, A., Hoffmann, R., Nilsson, U., Sundberg, C., Watson, C.A. (2018). Risks and opportunities of increasing yields in or¬ganic farming. A review. Agronomy for Sustainable Development, 38(2), 14. https://doi.org/10.1007/s13593-018-0489-3 (Crossref)

Rudnicki, R., Wiśniewski, Ł., Biczkowski, M. (2021). A Spatial Typography of Environmentally Friendly Common Agricultural Policy Support Relevant to Eu¬ropean Green Deal Objectives. Land, 10, 10. https://doi.org/10.3390/land10101092 (Crossref)

Selwyn, B. (2022). A green new deal for agriculture: for, within, or against capitalism? Journal of Peasant Studies, 48 (4), 778–806. https://doi.org/10.1080/03066150.2020.1854740 (Crossref)

Simionescu, M., Bilan, Y., Gędek, S., Streimikiene, D. (2019). The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union. Sustainabil¬ity, 11, 12. https://doi.org/10.3390/su11123433 (Crossref)

Szajner, P., Szczepaniak, I. (2023). Gospodarowanie energią w polskim przemyśle spożywczym (Energy manage¬ment in the Polish food industry). Przemysł Spożywczy, 77(8). https://doi.org/10.15199/65.2023.8.1 (Crossref)

Szubska-Włodarczyk, N. (2023). Organic Farming in the European Union in the Face of the Challenges of Sus¬tainable Consumption. Zagadnienia Ekonomiki Rolnej, 376(3), 47–65. (Crossref)

Wang, J., Vanga, S.K., Saxena, R., Orsat, V., Raghavan, V. (2018). Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate, 6, 2. https://doi.org/10.3390/cli6020041 (Crossref)

Wang, X., Liu, F. (2021). Effects of Elevated CO2 and Heat on Wheat Grain Quality. Plants, 10(5), 1027. https://doi.org/10.3390/plants10051027 (Crossref)

Wesseler, J. (2022). The EU’s farm-to-fork strategy: An as¬sessment from the perspective of agricultural econom¬ics. Applied Economic Perspectives and Policy, 44(4), 1826–1843. https://doi.org/10.1002/aepp.13239 (Crossref)

Westerlund, J. (2007). Testing for Error Correction in Panel Data. Oxford Bulletin of Economics and Statis¬tics, 69(6), 709–748. https://doi.org/10.1111/j.1468-0084.2007.00477.x (Crossref)

White, H. (1980). A Heteroskedasticity-Consistent Cova¬riance Matrix Estimator and a Direct Test for Hetero¬skedasticity. Econometrica, 48(4), 817–838. https://doi.org/10.2307/1912934 (Crossref)

Wood, D., Lenné, J. M. (2018). A natural adaptive syn¬drome as a model for the origins of cereal agriculture. Proceedings of the Royal Society B: Biological Sci¬ences, 285(1875), 20180277. https://doi.org/10.1098/rspb.2018.0277 (Crossref)

Wooldridge, J.M. (2001). Applications of Generalized Method of Moments Estimation. Journal of Economic Perspectives, 15(4), 87–100. https://doi.org/10.1257/jep.15.4.87 (Crossref)

Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data. The MIT Press, Cambridge.. https://www.jstor.org/stable/j.ctt5hhcfr

Wrzaszcz, W., Prandecki, K. (2020). Agriculture and the European Green Deal. Zagadnienia Ekonomiki Rolnej, 365(Special Issue 4), 156–179. https://doi.org/10.30858/zer/131841 (Crossref)

Xiang, X., Solaymani, S. (2022). Change in cereal produc¬tion caused by climate change in Malaysia. Ecologi¬cal Informatics, 70, 101741. https://doi.org/10.1016/j.ecoinf.2022.101741 (Crossref)

Yu, Q., Xiang, M., Wu, W., Tang, H. (2019). Changes in global cropland area and cereal production: An inter-country comparison. Agriculture, Ecosystems & Environment, 269, 140–147. https://doi.org/10.1016/j.agee.2018.09.031 (Crossref)

Zhang, X., Long, H. (2013). MDG Hunger Target: Analysis of Cereal Production System and the Evaluation of Ce¬real Production Potential in Africa. Journal of Sustain¬able Development, 6, 11. https://doi.org/10.5539/jsd.v6n11p82 (Crossref)

Zwane, T., Udimal, T.B., Pakmoni, L. (2022). The Impact of Renewable Energy Consumption, Fertiliser Con¬sumption and Agricultural Economic Growth on Agri¬cultural Carbon Emissions: An Application of FMOLS and DOLS Approaches. Research Square. https://doi.org/10.21203/rs.3.rs-1841173/v1 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles